Research Article
BibTex RIS Cite

Evaluation of Exogenous Salicylic Acid Application on White Mould Disease (Sclerotinia sclerotiorum) and Photosynthetic Pigments in Lettuce (Lactuca sativa L.)

Year 2022, Volume: 9 Issue: 1, 90 - 96, 28.02.2022
https://doi.org/10.19159/tutad.1056333

Abstract

The aim of this study was to investigate the effectiveness of salicylic acid (SA) treatment against white mould disease (Sclerotinia sclerotiorum) (SS) disease in lettuce (Lactuca sativa L.) plant. In this study, two lettuce cultivars (Melina and Fuzila) were used and four treatments were applied to the plants (control, SS, SA, and +SA+SS treatments). Weight (g), the number of marketable leaf per plant, the number of non-marketable leaf per plant, leaf ratio (%), relative water content (%), chlorophyll parameters (chlorophyll a, b and total chlorophyll (mg 100g-1), colour parameters (L, a and b) and disease severity (%) were determined. According to the results, SA treatment increased the weight (563.65 g plant-1 for cv. Melina and 574.67 g plant-1 for cv. Fuzila) and number of marketable leaves (26.83 leaf per plant for cv. Melina and 31.33 leaf per plant for cv. Fuzila) whereas it decreased the number of non-marketable leaves (8.66 leaf per plant for cv. Melina and 6.67 leaf per plant for cv. Fuzila) in both cultivars. Besides, it was found that SA treatment reduced disease severity by 19% and 14% for cv. Melina and cv. Fuzila, respectively. Total chlorophyll contents ranged from 0.421 mg 100g-1 to 0.484 mg 100g-1 for Melina and 0.467 mg 100g-1 to 0.593 mg 100g-1 for Fuzila cvs. These results demonstrated that there was an increasing tendency due to SA applications for the total chlorophyll content in all cultivars. Consequently, it has been determined that SA treatment is effective and can be used against white mold disease in lettuce plants.

References

  • Agrios, G.N., 1997. Plant Pathology. Academic Press. California, USA.
  • Akbulut, M., Çoklar, H., 2008. Physicochemical and rheological properties of sesame pastes (Tahin) processed from hulled and unhulled roasted sesame seeds and their blends at various levels. Journal of Food Process Engineering, 31(4): 488-502.
  • Alkahtani, M., Omer, S.A., El-Naggar, M.A., Abdel-Kareem, E.M., Mahmoud, M.A., 2011. Pathogenesis-related protein and phytoalexin induction against cucumber powdery mildew by elicitors. International Journal of Plant Pathology, 2(2): 63-71.
  • AL-Saleh, M.A., 2011. Pathogenic variability among five bacterial isolates of Xanthomonas campestris pv. vesicatoria, causing spot disease on tomato and their response to salicylic acid. Journal of the Saudi Society of Agricultural Sciences, 10(1): 47-51.
  • Anonymous, 2016. Plant Diseases Standard Drug Trial Methods. White Rot Disease of Vegetables (Sclerotiorum sclerotinia) (Lib) De Barry Standard Drug Trial Method. T.C. Ministry of Food, Agriculture and Livestock, Department of Plant Health Research, Ankara, Turkey. (In Turkish).
  • Anonymous, 2020. Lettuce Varieties. (http://www. agtohum.com.tr/), (Date of access: 30.11.2020). (In Turkish).
  • Anonymous, 2021. Food and Agriculture Organization of the United Nation Statistics for 2019. (http:// www.fao.org/faostat/en/#data/QC), (Date of access: 10.11.2021).
  • Balint‐Kurti, P., 2019. The hypersensitive defence response is found in all higher plants and is characterized by a rapid cell death at the point of pathogen ingress. Molecular Plant Pathology, 20(8): 1163-1178.
  • Basit, A., Shah, K., Rahman, M.U., Xing, L., Zuo, X., Han, M., Alam, N., Khan, F., Ahmed, I., Khalid, M.A., 2018. Salicylic acid an emerging growth and flower inducing hormone in marigold (Tagetes sp. L.). Pure and Applied Biology, 7(4): 1301-1308.
  • Bruehl, G.W., 1987. Soilborne Plant Pathogens. Macmillan, New York.
  • Chitrampalam, P., Figuli, P.J., Matheron, M.E., Subbarao, K.V., Pryor, B.M., 2008. Biocontrol of lettuce drop caused by Sclerotinia sclerotiorum and S. minorin desert agroecosystems. Plant Disease, 92(12): 1625-1634.
  • Dixon, G.R., 1984. Plasmodiophora brassicae (Clubroot) in vegetable crop diseases. MacMillan Publishers Ltd, London.
  • Erdiller, G., 1992. Plant Diseases Epidemiology. Ankara University Faculty of Agriculture Publications, Number: 1258, Ankara, Turkey. (In Turkish).
  • Ghai, N., Setia, R.C., Setia, N., 2002. Effects of paclobutrazol and salicylic acid on chlorophyll content, hill activity and yield components in Brassica napus L. Phytomorphology, 52(1): 83-87.
  • Goicoechea, N., Aguirreolea, J., Garcia-Mina, J.M., 2004. Alleviation of verticillium wilt in pepper (Capsicum annuum L.) by using the organic amendment COAH of natural origin. Scientia Horticulturae, 101(1-2): 23-27.
  • Gorni, P.H., Pacheco, A.C., 2016. Growth promotion and elicitor activity of salicylic acid in Achillea millefolium L. African Journal of Biotechnology, 15(16): 657-665.
  • Hayat, Q., Hayat, S., Irfan, M., Ahmad, A., 2010. Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany, 68(1): 14-25.
  • Kaydan, D., Yağmur, M., Okut, N., 2006. Effects of salicylic acid on the growth and some physiological characters in salt stressed wheat (Triticum aestivum L.). Journal of Agricultural Science, 13(2): 114-119.
  • Khan, W., Prithiviraj, B., Smith, D.L., 2003. Photosynthetic responses of corn and soybean to foliar application of salicylates. Plant Physiol, 160(5): 485-492.
  • Kim, J.M., Moon, Y., Kopsell, D.A., Park, S., Tou, J.C., Waterland, N.L., 2016. Nutritional value of crisphead ‘iceberg’ and romaine lettuces (Lactuca sativa L.). Journal of Agricultural Science, 8(11): 1-13.
  • Koo, M.Y., Heo, A.Y., Choi, H.W., 2020. Salicylic acid as a safe plant protector and growth regulator. The Plant Pathology Journal, 36(1): 1-10.
  • Lahoz, E., Caiazzo, R., Morra, L., Carella, A.J., Martín-Gil, J., 2009. Suppression of lettuce drop caused by Sclerotinia sclerotiorum in the field using municipal solid waste compost and fungistatic effect of water extract. Discrete Event Dynamic Systems, 3(1): 99-102.
  • Larqué-Saavedra, A., Martin-Mex, R., 2007. Effects of salicylic acid on the bioproductivity of plants. In: S. Hayat and A. Ahmad (Eds.), Salicylic Acid: A Plant Hormone, Springer, Dordrecht, pp. 15-23.
  • Lichtenthaler, H.K., Wellburn, A.R., 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5): 591-592.
  • Maruri-López, I., Aviles-Baltazar, N.Y., Buchala, A., Serrano, M., 2019. Intra and extracellular journey of the phytohormone salicylic acid. Frontiers in Plant Science, 10: 423.
  • Melzer, M.S., Boland, G.J., 1994. Epidemiology of lettuce drop caused by Sclerotinia minor. Canadian Journal of Plant Pathology, 16: 170-176.
  • Mert Türk, F., Mermer, D., 2004. Determination of disease incidence and mycelial compatible groups of Sclerotinia sclerotiorum in lettuce growing in greenhouses of Çanakkale province. Journal of Mustafa Kemal University Faculty of Agriculture, 9(1-2): 1-8. (In Turkish).
  • Mert Türk, F., Mermer Doğu, D., 2009. Determination of the disease prevelance of Sclerotinia sclerotiorum in brassica plants in Çanakkale and Edremit gulf and variation of the isolates to salycilic acid. Harran University Journal of the Faculty of Agriculture, 13(2): 1-7. (In Turkish).
  • Mohamed, H.I., El-Shazly, H.H., Badr, A., 2020. Role of salicylic acid in biotic and abiotic stress tolerance in plants. In: R. Lone, R. Shuab and A. Kamili (Eds.), Plant Phenolics in Sustainable Agriculture, Springer, Singapore, pp. 533-554.
  • Moharekar, S.T., Lokhande, S.D., Hara, T., Tanaka, R., Tanaka, A., Chavan, P.D., 2003. Effect of salicylic acid on chlorophyll and carotenoid contents of wheat and moong seedlings. Photosynthetica, 41(2): 315-317.
  • Nouriyani, H., 2021. Response of leaf gas exchanges and grain yield of S.C. 704 maize to salicylic acid foliar application under water deficit stress. Crop Physiology Journal, 13(50): 151-163.
  • Nováková, M., Sasek, V., Dobrev, P.I., Valentova, O., Burketova, L., 2014. Plant hormones in defense response of Brassica napus to Sclerotinia sclerotiorum-reassessing the role of salicylic acid in the interaction with a necrotroph. Plant Physiology and Biochemistry, 80: 308-317.
  • Özgönen, H., Biçici, M., Erkılıç, A., 2001. The effect of salicyclic acid and endomycorrhizal fungus glomus etunicatumon plant development of tomatoes and Fusarium wilt caused by Fusarium oxysporumf. sp lycopersici. Turkish Journal of Agriculture and Forestry, 25(1): 25-29.
  • Özyazıcı, G., 2021. Effects of salicylic acid applications on salt stress in milk thistle (Silybum marianum L.). 3rd International Cukurova Agriculture and Veterinary Congress, 9-10 October, Adana, Turkey, pp. 870-878.
  • Özyazıcı, M.A., Açıkbaş, S., 2021. The effect of seed priming applications on germination parameters of red clover (Trifolium pratense L.). Journal of the Institute of Science and Technology, 11(4): 3232-3242.
  • Putnam, J., Kantor, L.S., Allshouse, J., 2000. Per capita food supply trends: Progress toward dietary guidelines. Food Review, 23(3): 2-14.
  • Sabagh, A.E.L., Hossain, A., Islam, M.S., Iqbal, M.A., Amanet, K., Mubeen, M., Nasim, W., Wasaya, A., Llanes, A., Ratnasekera, D., Singhal, R.K., Kumari, A., Meena, R.S., Abdelhamid, M., Hasanuzzaman, M., Raza, M.A., Özyazici, G., Ozyazici, M.A., Erman, M., 2021. Prospective role of plant growth regulators for tolerance to abiotic stresses. In: T. Aftab and K.R. Hakeem (Eds.), Plant Growth Regulators, 1st Eds., Springer, Cham., Switzerland, pp. 1-38.
  • Smolińska, U., Kowalska, B., 2018. Biological control of the soil-borne fungal pathogen Sclerotinia sclerotiorum. Journal of Plant Pathology, 100: 1-12.
  • Subbarao, K.V., 1998. Progress toward integrated management of lettuce drop. Plant Disease, 82(10): 1068-1078.
  • Townsend, G.K., Heuberger, J.W., 1943. Methods for estimating losses caused by diseases in fungicide experiments. Plant Disease Report, 27: 340-343.
  • Tozlu, E., 2008. The cultural, biological and chemical control of Sclerotinia sclerotiorum and Sclerotinia minor in sunflower. Atatürk University Journal of Agricultural Faculty, 39(2): 281-286. (In Turkish).
  • Türkyılmaz, B., Aktaş L.Y., Güven, A., 2005. Salicylic acid induced some biochemical and physiological changes in Phaseolus vulgaris L. Fırat University Journal of Science and Engineering, 17(2): 319-326. (In Turkish).
  • Uğurcan, S., 1997. Researches on the effects of solarization and antagonist microorganisms on Sclerotinia sclerotiorum of lettuce. Master Thesis, Çukurova University, Institute of Science and Technology, Adana, Turkey. (In Turkish).
  • Wang, Y.Y., Li, B.Q., Qin, G.Z., Li, L., Tian, S.P., 2011. Defense response of tomato fruit at different maturity stages to salicylic acid and ethephon. Scientia Horticulturae, 129(2): 183-188.
  • Xia, S., Xu, Y., Hoy,R., Zhang, J., Qin, L., Li, X., 2020. The notorious soilborne pathogenic fungus Sclerotinia sclerotiorum: An update on genes studied with mutant analysis. Pathogens, 9(27): 1-22.
  • Yanar, Y., Miller, S.A., 2003. Resistance of pepper cultivars and accessions of Capsicum spp. to Sclerotinia sclerotiorum. Plant Disease, 87(3): 303-307.
  • Yildirim, E., Turan, M., Guvenc, I., 2008. Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. Journal of Plant Nutrition, 31(3): 593-612.
  • Zheng, X., Koopmann, B., Tiedemann, A., 2019. Role of salicylic acid and components of the phenylpropanoid pathway in basal and cultivar-related resistance of oilseed rape (Brassica napus) to Verticillium longisporum. Plants (Basel), 8(11): 491.

Evaluation of Exogenous Salicylic Acid Application on White Mould Disease (Sclerotinia sclerotiorum) and Photosynthetic Pigments in Lettuce (Lactuca sativa L.)

Year 2022, Volume: 9 Issue: 1, 90 - 96, 28.02.2022
https://doi.org/10.19159/tutad.1056333

Abstract

The aim of this study was to investigate the effectiveness of salicylic acid (SA) treatment against white mould disease (Sclerotinia sclerotiorum) (SS) disease in lettuce (Lactuca sativa L.) plant. In this study, two lettuce cultivars (Melina and Fuzila) were used and four treatments were applied to the plants (control, SS, SA, and +SA+SS treatments). Weight (g), the number of marketable leaf per plant, the number of non-marketable leaf per plant, leaf ratio (%), relative water content (%), chlorophyll parameters (chlorophyll a, b and total chlorophyll (mg 100g-1), colour parameters (L, a and b) and disease severity (%) were determined. According to the results, SA treatment increased the weight (563.65 g plant-1 for cv. Melina and 574.67 g plant-1 for cv. Fuzila) and number of marketable leaves (26.83 leaf per plant for cv. Melina and 31.33 leaf per plant for cv. Fuzila) whereas it decreased the number of non-marketable leaves (8.66 leaf per plant for cv. Melina and 6.67 leaf per plant for cv. Fuzila) in both cultivars. Besides, it was found that SA treatment reduced disease severity by 19% and 14% for cv. Melina and cv. Fuzila, respectively. Total chlorophyll contents ranged from 0.421 mg 100g-1 to 0.484 mg 100g-1 for Melina and 0.467 mg 100g-1 to 0.593 mg 100g-1 for Fuzila cvs. These results demonstrated that there was an increasing tendency due to SA applications for the total chlorophyll content in all cultivars. Consequently, it has been determined that SA treatment is effective and can be used against white mold disease in lettuce plants.

References

  • Agrios, G.N., 1997. Plant Pathology. Academic Press. California, USA.
  • Akbulut, M., Çoklar, H., 2008. Physicochemical and rheological properties of sesame pastes (Tahin) processed from hulled and unhulled roasted sesame seeds and their blends at various levels. Journal of Food Process Engineering, 31(4): 488-502.
  • Alkahtani, M., Omer, S.A., El-Naggar, M.A., Abdel-Kareem, E.M., Mahmoud, M.A., 2011. Pathogenesis-related protein and phytoalexin induction against cucumber powdery mildew by elicitors. International Journal of Plant Pathology, 2(2): 63-71.
  • AL-Saleh, M.A., 2011. Pathogenic variability among five bacterial isolates of Xanthomonas campestris pv. vesicatoria, causing spot disease on tomato and their response to salicylic acid. Journal of the Saudi Society of Agricultural Sciences, 10(1): 47-51.
  • Anonymous, 2016. Plant Diseases Standard Drug Trial Methods. White Rot Disease of Vegetables (Sclerotiorum sclerotinia) (Lib) De Barry Standard Drug Trial Method. T.C. Ministry of Food, Agriculture and Livestock, Department of Plant Health Research, Ankara, Turkey. (In Turkish).
  • Anonymous, 2020. Lettuce Varieties. (http://www. agtohum.com.tr/), (Date of access: 30.11.2020). (In Turkish).
  • Anonymous, 2021. Food and Agriculture Organization of the United Nation Statistics for 2019. (http:// www.fao.org/faostat/en/#data/QC), (Date of access: 10.11.2021).
  • Balint‐Kurti, P., 2019. The hypersensitive defence response is found in all higher plants and is characterized by a rapid cell death at the point of pathogen ingress. Molecular Plant Pathology, 20(8): 1163-1178.
  • Basit, A., Shah, K., Rahman, M.U., Xing, L., Zuo, X., Han, M., Alam, N., Khan, F., Ahmed, I., Khalid, M.A., 2018. Salicylic acid an emerging growth and flower inducing hormone in marigold (Tagetes sp. L.). Pure and Applied Biology, 7(4): 1301-1308.
  • Bruehl, G.W., 1987. Soilborne Plant Pathogens. Macmillan, New York.
  • Chitrampalam, P., Figuli, P.J., Matheron, M.E., Subbarao, K.V., Pryor, B.M., 2008. Biocontrol of lettuce drop caused by Sclerotinia sclerotiorum and S. minorin desert agroecosystems. Plant Disease, 92(12): 1625-1634.
  • Dixon, G.R., 1984. Plasmodiophora brassicae (Clubroot) in vegetable crop diseases. MacMillan Publishers Ltd, London.
  • Erdiller, G., 1992. Plant Diseases Epidemiology. Ankara University Faculty of Agriculture Publications, Number: 1258, Ankara, Turkey. (In Turkish).
  • Ghai, N., Setia, R.C., Setia, N., 2002. Effects of paclobutrazol and salicylic acid on chlorophyll content, hill activity and yield components in Brassica napus L. Phytomorphology, 52(1): 83-87.
  • Goicoechea, N., Aguirreolea, J., Garcia-Mina, J.M., 2004. Alleviation of verticillium wilt in pepper (Capsicum annuum L.) by using the organic amendment COAH of natural origin. Scientia Horticulturae, 101(1-2): 23-27.
  • Gorni, P.H., Pacheco, A.C., 2016. Growth promotion and elicitor activity of salicylic acid in Achillea millefolium L. African Journal of Biotechnology, 15(16): 657-665.
  • Hayat, Q., Hayat, S., Irfan, M., Ahmad, A., 2010. Effect of exogenous salicylic acid under changing environment: A review. Environmental and Experimental Botany, 68(1): 14-25.
  • Kaydan, D., Yağmur, M., Okut, N., 2006. Effects of salicylic acid on the growth and some physiological characters in salt stressed wheat (Triticum aestivum L.). Journal of Agricultural Science, 13(2): 114-119.
  • Khan, W., Prithiviraj, B., Smith, D.L., 2003. Photosynthetic responses of corn and soybean to foliar application of salicylates. Plant Physiol, 160(5): 485-492.
  • Kim, J.M., Moon, Y., Kopsell, D.A., Park, S., Tou, J.C., Waterland, N.L., 2016. Nutritional value of crisphead ‘iceberg’ and romaine lettuces (Lactuca sativa L.). Journal of Agricultural Science, 8(11): 1-13.
  • Koo, M.Y., Heo, A.Y., Choi, H.W., 2020. Salicylic acid as a safe plant protector and growth regulator. The Plant Pathology Journal, 36(1): 1-10.
  • Lahoz, E., Caiazzo, R., Morra, L., Carella, A.J., Martín-Gil, J., 2009. Suppression of lettuce drop caused by Sclerotinia sclerotiorum in the field using municipal solid waste compost and fungistatic effect of water extract. Discrete Event Dynamic Systems, 3(1): 99-102.
  • Larqué-Saavedra, A., Martin-Mex, R., 2007. Effects of salicylic acid on the bioproductivity of plants. In: S. Hayat and A. Ahmad (Eds.), Salicylic Acid: A Plant Hormone, Springer, Dordrecht, pp. 15-23.
  • Lichtenthaler, H.K., Wellburn, A.R., 1983. Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5): 591-592.
  • Maruri-López, I., Aviles-Baltazar, N.Y., Buchala, A., Serrano, M., 2019. Intra and extracellular journey of the phytohormone salicylic acid. Frontiers in Plant Science, 10: 423.
  • Melzer, M.S., Boland, G.J., 1994. Epidemiology of lettuce drop caused by Sclerotinia minor. Canadian Journal of Plant Pathology, 16: 170-176.
  • Mert Türk, F., Mermer, D., 2004. Determination of disease incidence and mycelial compatible groups of Sclerotinia sclerotiorum in lettuce growing in greenhouses of Çanakkale province. Journal of Mustafa Kemal University Faculty of Agriculture, 9(1-2): 1-8. (In Turkish).
  • Mert Türk, F., Mermer Doğu, D., 2009. Determination of the disease prevelance of Sclerotinia sclerotiorum in brassica plants in Çanakkale and Edremit gulf and variation of the isolates to salycilic acid. Harran University Journal of the Faculty of Agriculture, 13(2): 1-7. (In Turkish).
  • Mohamed, H.I., El-Shazly, H.H., Badr, A., 2020. Role of salicylic acid in biotic and abiotic stress tolerance in plants. In: R. Lone, R. Shuab and A. Kamili (Eds.), Plant Phenolics in Sustainable Agriculture, Springer, Singapore, pp. 533-554.
  • Moharekar, S.T., Lokhande, S.D., Hara, T., Tanaka, R., Tanaka, A., Chavan, P.D., 2003. Effect of salicylic acid on chlorophyll and carotenoid contents of wheat and moong seedlings. Photosynthetica, 41(2): 315-317.
  • Nouriyani, H., 2021. Response of leaf gas exchanges and grain yield of S.C. 704 maize to salicylic acid foliar application under water deficit stress. Crop Physiology Journal, 13(50): 151-163.
  • Nováková, M., Sasek, V., Dobrev, P.I., Valentova, O., Burketova, L., 2014. Plant hormones in defense response of Brassica napus to Sclerotinia sclerotiorum-reassessing the role of salicylic acid in the interaction with a necrotroph. Plant Physiology and Biochemistry, 80: 308-317.
  • Özgönen, H., Biçici, M., Erkılıç, A., 2001. The effect of salicyclic acid and endomycorrhizal fungus glomus etunicatumon plant development of tomatoes and Fusarium wilt caused by Fusarium oxysporumf. sp lycopersici. Turkish Journal of Agriculture and Forestry, 25(1): 25-29.
  • Özyazıcı, G., 2021. Effects of salicylic acid applications on salt stress in milk thistle (Silybum marianum L.). 3rd International Cukurova Agriculture and Veterinary Congress, 9-10 October, Adana, Turkey, pp. 870-878.
  • Özyazıcı, M.A., Açıkbaş, S., 2021. The effect of seed priming applications on germination parameters of red clover (Trifolium pratense L.). Journal of the Institute of Science and Technology, 11(4): 3232-3242.
  • Putnam, J., Kantor, L.S., Allshouse, J., 2000. Per capita food supply trends: Progress toward dietary guidelines. Food Review, 23(3): 2-14.
  • Sabagh, A.E.L., Hossain, A., Islam, M.S., Iqbal, M.A., Amanet, K., Mubeen, M., Nasim, W., Wasaya, A., Llanes, A., Ratnasekera, D., Singhal, R.K., Kumari, A., Meena, R.S., Abdelhamid, M., Hasanuzzaman, M., Raza, M.A., Özyazici, G., Ozyazici, M.A., Erman, M., 2021. Prospective role of plant growth regulators for tolerance to abiotic stresses. In: T. Aftab and K.R. Hakeem (Eds.), Plant Growth Regulators, 1st Eds., Springer, Cham., Switzerland, pp. 1-38.
  • Smolińska, U., Kowalska, B., 2018. Biological control of the soil-borne fungal pathogen Sclerotinia sclerotiorum. Journal of Plant Pathology, 100: 1-12.
  • Subbarao, K.V., 1998. Progress toward integrated management of lettuce drop. Plant Disease, 82(10): 1068-1078.
  • Townsend, G.K., Heuberger, J.W., 1943. Methods for estimating losses caused by diseases in fungicide experiments. Plant Disease Report, 27: 340-343.
  • Tozlu, E., 2008. The cultural, biological and chemical control of Sclerotinia sclerotiorum and Sclerotinia minor in sunflower. Atatürk University Journal of Agricultural Faculty, 39(2): 281-286. (In Turkish).
  • Türkyılmaz, B., Aktaş L.Y., Güven, A., 2005. Salicylic acid induced some biochemical and physiological changes in Phaseolus vulgaris L. Fırat University Journal of Science and Engineering, 17(2): 319-326. (In Turkish).
  • Uğurcan, S., 1997. Researches on the effects of solarization and antagonist microorganisms on Sclerotinia sclerotiorum of lettuce. Master Thesis, Çukurova University, Institute of Science and Technology, Adana, Turkey. (In Turkish).
  • Wang, Y.Y., Li, B.Q., Qin, G.Z., Li, L., Tian, S.P., 2011. Defense response of tomato fruit at different maturity stages to salicylic acid and ethephon. Scientia Horticulturae, 129(2): 183-188.
  • Xia, S., Xu, Y., Hoy,R., Zhang, J., Qin, L., Li, X., 2020. The notorious soilborne pathogenic fungus Sclerotinia sclerotiorum: An update on genes studied with mutant analysis. Pathogens, 9(27): 1-22.
  • Yanar, Y., Miller, S.A., 2003. Resistance of pepper cultivars and accessions of Capsicum spp. to Sclerotinia sclerotiorum. Plant Disease, 87(3): 303-307.
  • Yildirim, E., Turan, M., Guvenc, I., 2008. Effect of foliar salicylic acid applications on growth, chlorophyll, and mineral content of cucumber grown under salt stress. Journal of Plant Nutrition, 31(3): 593-612.
  • Zheng, X., Koopmann, B., Tiedemann, A., 2019. Role of salicylic acid and components of the phenylpropanoid pathway in basal and cultivar-related resistance of oilseed rape (Brassica napus) to Verticillium longisporum. Plants (Basel), 8(11): 491.
There are 48 citations in total.

Details

Primary Language English
Journal Section Research Article
Authors

Nuray Akbudak 0000-0003-2669-5667

Ozan Zambi 0000-0001-7101-1856

Ufuk Tan Duran 0000-0002-1329-5982

Publication Date February 28, 2022
Published in Issue Year 2022 Volume: 9 Issue: 1

Cite

APA Akbudak, N., Zambi, O., & Duran, U. T. (2022). Evaluation of Exogenous Salicylic Acid Application on White Mould Disease (Sclerotinia sclerotiorum) and Photosynthetic Pigments in Lettuce (Lactuca sativa L.). Türkiye Tarımsal Araştırmalar Dergisi, 9(1), 90-96. https://doi.org/10.19159/tutad.1056333
AMA Akbudak N, Zambi O, Duran UT. Evaluation of Exogenous Salicylic Acid Application on White Mould Disease (Sclerotinia sclerotiorum) and Photosynthetic Pigments in Lettuce (Lactuca sativa L.). TÜTAD. February 2022;9(1):90-96. doi:10.19159/tutad.1056333
Chicago Akbudak, Nuray, Ozan Zambi, and Ufuk Tan Duran. “Evaluation of Exogenous Salicylic Acid Application on White Mould Disease (Sclerotinia Sclerotiorum) and Photosynthetic Pigments in Lettuce (Lactuca Sativa L.)”. Türkiye Tarımsal Araştırmalar Dergisi 9, no. 1 (February 2022): 90-96. https://doi.org/10.19159/tutad.1056333.
EndNote Akbudak N, Zambi O, Duran UT (February 1, 2022) Evaluation of Exogenous Salicylic Acid Application on White Mould Disease (Sclerotinia sclerotiorum) and Photosynthetic Pigments in Lettuce (Lactuca sativa L.). Türkiye Tarımsal Araştırmalar Dergisi 9 1 90–96.
IEEE N. Akbudak, O. Zambi, and U. T. Duran, “Evaluation of Exogenous Salicylic Acid Application on White Mould Disease (Sclerotinia sclerotiorum) and Photosynthetic Pigments in Lettuce (Lactuca sativa L.)”, TÜTAD, vol. 9, no. 1, pp. 90–96, 2022, doi: 10.19159/tutad.1056333.
ISNAD Akbudak, Nuray et al. “Evaluation of Exogenous Salicylic Acid Application on White Mould Disease (Sclerotinia Sclerotiorum) and Photosynthetic Pigments in Lettuce (Lactuca Sativa L.)”. Türkiye Tarımsal Araştırmalar Dergisi 9/1 (February 2022), 90-96. https://doi.org/10.19159/tutad.1056333.
JAMA Akbudak N, Zambi O, Duran UT. Evaluation of Exogenous Salicylic Acid Application on White Mould Disease (Sclerotinia sclerotiorum) and Photosynthetic Pigments in Lettuce (Lactuca sativa L.). TÜTAD. 2022;9:90–96.
MLA Akbudak, Nuray et al. “Evaluation of Exogenous Salicylic Acid Application on White Mould Disease (Sclerotinia Sclerotiorum) and Photosynthetic Pigments in Lettuce (Lactuca Sativa L.)”. Türkiye Tarımsal Araştırmalar Dergisi, vol. 9, no. 1, 2022, pp. 90-96, doi:10.19159/tutad.1056333.
Vancouver Akbudak N, Zambi O, Duran UT. Evaluation of Exogenous Salicylic Acid Application on White Mould Disease (Sclerotinia sclerotiorum) and Photosynthetic Pigments in Lettuce (Lactuca sativa L.). TÜTAD. 2022;9(1):90-6.

TARANILAN DİZİNLER

14658    14659     14660   14661  14662  14663  14664        

14665      14667